Search results for "positive solution"

showing 10 items of 30 documents

Positive solutions for singular double phase problems

2021

Abstract We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a p-Laplacian and of a weighted q-Laplacian ( q p ) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter λ > 0 , the equation has at least two positive solutions.

Class (set theory)Double phase problemNehari manifold01 natural sciencesDirichlet distributionsymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: MathematicsApplied mathematics0101 mathematics35J60 35D05Positive solutionsParametric statisticsMathematicsApplied Mathematics010102 general mathematicsSingular termSingular termMathematics::Spectral TheoryDifferential operatorTerm (time)010101 applied mathematicsDouble phaseDiscontinuous weightsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Singular Double Phase Problems with Convection

2020

We consider a nonlinear Dirichlet problem driven by the sum of a $p$ -Laplacian and of a $q$ -Laplacian (double phase equation). In the reaction we have the combined effects of a singular term and of a gradient dependent term (convection) which is locally defined. Using a mixture of variational and topological methods, together with suitable truncation and comparison techniques, we prove the existence of a positive smooth solution.

ConvectionDirichlet problemPartial differential equationTruncationApplied Mathematics010102 general mathematicsMathematical analysisSingular termFixed pointMathematics::Spectral Theory01 natural sciencesTerm (time)Positive solution010101 applied mathematicsNonlinear system(p q)-LaplacianSettore MAT/05 - Analisi MatematicaNonlinear maximum principle0101 mathematicsLaplace operatorNonlinear regularityMathematicsActa Applicandae Mathematicae
researchProduct

Positive solutions for nonlinear Robin problems with convection

2019

We consider a nonlinear Robin problem driven by the p-Laplacian and with a convection term f(z,x,y). Without imposing any global growth condition on f(z,·,·) and using topological methods (the Leray-Schauder alternative principle), we show the existence of a positive smooth solution.

ConvectionGeneral Mathematicsnonlinear maximum principlep-LaplacianGeneral Engineering(minimal) positive solutionNonlinear systemEngineering (all)p-LaplacianApplied mathematicsnonlinear regularityMathematics (all)convection termLeray-Schauder alternative principleMathematics
researchProduct

Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian

2017

Abstract In the framework of variational methods, we use a two non-zero critical points theorem to obtain the existence of two positive solutions to Dirichlet boundary value problems for difference equations involving the discrete p -Laplacian operator.

Difference equationDiscrete boundary value problemTwo solution01 natural sciencesElliptic boundary value problemDirichlet distributionCritical point theory; Difference equations; Discrete boundary value problems; p-Laplacian; Positive solutions; Two solutions; Analysis; Applied MathematicsPositive solutionsymbols.namesakePoint (geometry)Boundary value problem0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisp-LaplacianAnalysiMixed boundary condition010101 applied mathematicssymbolsp-LaplacianCritical point theoryNonlinear boundary value problemLaplace operatorAnalysis
researchProduct

Positive solutions for singular (p, 2)-equations

2019

We consider a nonlinear nonparametric Dirichlet problem driven by the sum of a p-Laplacian and of a Laplacian (a (p, 2)-equation) and a reaction which involves a singular term and a $$(p-1)$$ -superlinear perturbation. Using variational tools and suitable truncation and comparison techniques, we show that the problem has two positive smooth solutions.

Dirichlet problemApplied MathematicsGeneral Mathematics010102 general mathematicsNonparametric statisticsSingular termGeneral Physics and AstronomyPerturbation (astronomy)Mathematics::Spectral Theory01 natural sciences010101 applied mathematicsNonlinear systemSettore MAT/05 - Analisi MatematicaSingular term Superlinear perturbation Positive solution Nonlinear regularity Truncation Maximum principle Double phase problemApplied mathematics0101 mathematicsLaplace operatorMathematicsZeitschrift für angewandte Mathematik und Physik
researchProduct

Positive solutions of Dirichlet and homoclinic type for a class of singular equations

2018

Abstract We study a nonlinear singular boundary value problem and prove that, depending on a relationship between exponents of power terms, the problem has either solutions of Dirichlet type or homoclinic solutions. We make use of shooting techniques and lower and upper solutions.

Dirichlet problemPure mathematicsClass (set theory)SingularityApplied Mathematics010102 general mathematicsAnalysiType (model theory)01 natural sciencesDirichlet distributionPositive solution010101 applied mathematicssymbols.namesakeNonlinear systemSingularityHomoclinic solutionsymbolsHomoclinic orbitBoundary value problem0101 mathematicsAnalysisDirichlet problemMathematicsJournal of Mathematical Analysis and Applications
researchProduct

A sub-supersolution approach for Neumann boundary value problems with gradient dependence

2020

Abstract Existence and location of solutions to a Neumann problem driven by an nonhomogeneous differential operator and with gradient dependence are established developing a non-variational approach based on an adequate method of sub-supersolution. The abstract theorem is applied to prove the existence of finitely many positive solutions or even infinitely many positive solutions for a class of Neumann problems.

Gradient dependenceClass (set theory)Applied Mathematics010102 general mathematicsGeneral EngineeringNeumann problemGeneral MedicineDifferential operator01 natural sciencesPositive solution010101 applied mathematicsComputational MathematicsQuasilinear elliptic equationSettore MAT/05 - Analisi MatematicaNeumann boundary conditionMathematics::Metric GeometryApplied mathematicsBoundary value problem0101 mathematicsSub-supersolutionGeneral Economics Econometrics and FinanceAnalysisMathematicsNonlinear Analysis: Real World Applications
researchProduct

Nonlinear concave-convex problems with indefinite weight

2021

We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.

Numerical AnalysisPure mathematicslocal minimizerspositive solutionsNehari manifoldApplied MathematicsRegular polygonLagrange multiplierComputational MathematicsNonlinear systemSettore MAT/05 - Analisi Matematicanonlinear regularityAnalysisMathematics
researchProduct

Parametric nonlinear singular Dirichlet problems

2019

Abstract We consider a nonlinear parametric Dirichlet problem driven by the p -Laplacian and a reaction which exhibits the competing effects of a singular term and of a resonant perturbation. Using variational methods together with suitable truncation and comparison techniques, we prove a bifurcation-type theorem describing the dependence on the parameter of the set of positive solutions.

Perturbation (astronomy)01 natural sciencesResonanceDirichlet distributionPositive solutionsymbols.namesakeSingularityApplied mathematics0101 mathematicsParametric statisticsMathematicsDirichlet problemSingularityApplied Mathematics010102 general mathematicsGeneral EngineeringSingular termGeneral Medicine010101 applied mathematicsComputational MathematicsNonlinear systemsymbolsGeneral Economics Econometrics and FinanceLaplace operatorAnalysisBifurcation-type theorem
researchProduct

Positive solutions of discrete boundary value problems with the (p,q)-Laplacian operator

2017

We consider a discrete Dirichlet boundary value problem of equations with the (p,q)-Laplacian operator in the principal part and prove the existence of at least two positive solutions. The assumptions on the reaction term ensure that the Euler-Lagrange functional, corresponding to the problem, satisfies an abstract two critical points result.

Positive solutionDifference equations(PS)-conditionpositive solutionsSettore MAT/05 - Analisi MatematicaDifference equationlcsh:Mathematics(pq)-Laplacian operator(p q)-Laplacian operatorlcsh:QA1-939Electronic Journal of Differential Equations
researchProduct